Name:

	3	4	Year 5	6
Counting	$\square \square$ I can count from 0 in multiples of $4,8,50$ and 100: I can say 10 or 100 more or less than a number I am given		LD I can count forwards or backwards in steps of powers of 10 for any given number up to $1,000,000$ with positive and negative whole numbers (including through zero) I ners and backwards	\square I can use negative numbers in context, and calculate intervals across zero (e.g. what is 15 more than -9?)
Place Value	$\square \square$ I can compare and order numbers up to 1000	\square I can order and compare numbers beyond 1000 \square I can round any number to the nearest 10,100 or 1000	0 value of reach digit vale, order and compare numbers up to $1,000,000$ and I know the val I can round any number up to $1,000,000$ to the nearest $10,100,1000,10,000$ and 100,000	$\square \square$ I can read, write, order and compare numbers up to 10,000,000 and I know the value of each digit \square I can round any whole number to a required degree of accuracy
Recording numbers	$\square \square$ I can read and write numbers up to 1000 in numerals (figures) and in words	\square I can read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value	$\square 1$ I can read Roman numerals to $1000(\mathrm{M})$ and recognise years written in Roman numerals squared $\left({ }^{\left({ }^{2}\right)}\right.$ and cubed $\left({ }^{(3)}\right.$)	
Mental +/-	$\square \square$ I can add and subtract numbers in my head, including: $\mathrm{HTU}+\mathrm{U}, \mathrm{HTU}+\mathrm{T}$ and $\mathrm{HTU}+\mathrm{H}$		$\square \square$ I can add and subtract numbers mentally with larger numbers (eg 12462-2300)	$\square \square$ I can do a wide range of mental calculations, including ones with mixed operations and large numbers
Written +/-	\square I can add and subtract numbers with up to three digits, using written column addition and subtraction	\square I can add and subtract numbers with up to 4 digits using written column addition and subtraction where appropriate	- I I can add and subtract whole numbers with more than 4 digits, including using written column methods	
Number facts	\square I know my 3,4 and 8 multiplication tables and I can use these multiplication and division facts to help me do calculations	\square I know my multiplication tables up to 12×12	\square I I can identify multiples and factors of a number: I can find all factor pairs of a number, and common factors of two numbers (1 I know and can use the vocabulary of prime numbers, prime factors and non-prime (composite) numbers \square I can work out whether a number up to 100 is prime and I know all the prime numbers up to 19	$\square \square$ I can identify common factors, common multiples and prime numbers
$\begin{gathered} \text { Mental } \\ (x / \div) \end{gathered}$	\square I can write down and find answers to multiplication and division sums using the multiplication tables I know (including for TUxU) in my head	\square When I do multiplication and division sums in my head, I use place value and my times tables knowledge (including multiplying by 0 and 1 and dividing by 1) to help me find answers; I can multiply three numbers together \square When I do multiplication sums in my head, I use factor pairs and change the order of the numbers to make the sum easier	1 I can multiply and divide numbers mentally (using my times tables knowledge) \square I I can multiply and divide whole numbers and those involving decimals by 10,100 and 1000	\square I can perform a wide range of mental calculations, including ones with large numbers (up to $1,000,000$) and including ones which involve mixed operations (a combination of addition, subtraction, multiplication and division)
Written (x / \div)	\square \square I am beginning to use written methods for multiplication and division sums	$\square \square$ I can multiply two-digit and three-digit numbers by a one-digit	\square I can multiply numbers up to 4 digits by a one- or two-digit number using a written method (including long multiplication for two-digit numbers) In I can divide numbers up to 4 digits by a one-digit number using the written method of short division: I can interpret remainders appropriately for the context	\square I can divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division (or short division): I can interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
Problems	\square I can estimate the answer to an addition and subtraction calculation; I can and use inverse operations to check answers \square I can find answers to addition and subtraction problems (including missing number problems) using number facts, place value, and written sums \square I can find answers to multiplication and division problems (including missing number problems and sums like 12 sweets are shared equally between 4 children); I choose the right type of sum to do and can explain why it is the right type of sum	\square I can estimate and use inverse operations to check answers to addition and subtraction calculations \square I can solve addition and subtraction two-step problems in different contexts, deciding which operations and methods to use and why \square I can find answers to multiplication and division problems presented in different ways (including correspondence and scaling) and involving harder numbers; I can multiply two digit numbers by one digit by partitioning, multiplying and then adding (so I answer 39×7 by adding the answers to 30×7 and 9×7)		
Fractions	som know that tenths come from dividing something into 10 equal parts and by dividing numbers by 10 (fractions with 1 as the numerator), and fractions with the same denominators equivan pick out and show, using diagrams, some equactions	I know that that hundredths come from dividing something by one hundred and dividing by tenths by ten I can identify and show, using diagrams, families of common equivalent fractions: I use factors and multiples to help me identify equivalent fractions		

	3	4	Year 5	6
Decimals			1 I can read and write decimal numbers as fractions I I can recognise and use thousandths and explain how they relate to tenths, nundredths and decimal equivalents to I can round decimals with two decimal places to the nearest whole number and to one decimal place In in mean write, order and compare numbers with up to three decimal places	\square I can explain the connection between a fraction and division; I can calculate decimal fraction equivalents [for example, 0.375] for a simple fraction
Percentages			$\square \square$ I can recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred': I can write percentages as a fraction with denominator 100, and as a decimal	\square
Calculating with fractions, decimals and percentages	\square I can work out and write down fractions of a set of objects (eg $3 / 5$ of the buttons are red) \square I know fractions are numbers: I can put them on a number line: compare fractions and pick our equivalent fractions. I can work out fractions of a number. \square I can add and subtract fractions with the same denominator [e.9. $5 / 7+1 / 7=6 / 7$] \square I can find answers to problems using all my fractions knowledge		\square I can add and subtract fractions with the same denominator; and I can add and subtract fractions with denominators that are multiples of the same number (eg $3 / 8+$ 1/4) \square I can multiply proper fractions and mixed numbers by whole numbers, with the help of materials and diagrams \square I can solve problems involving numbers up to three decimal places \square I can solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25	different denominators and mixed numbers, using the concept of equivalent fractions numbers andive proper fractions by whole I can solve problems which require of accuracy be rounded to specified degrees simple fract and can use equivalences between different contexts.
Measures				I I can use, read, write and convert between standard units, converting measurements of length, mass, ovlume and time from a smaller gnit of measure to a larger unit, and vice versa (including using decimal notation to up to three decimal places) and can calculate the area of parallelograms and triangles
Shape		I can compare and group (classify) shapes (including quadrilaterals and triangles) based on properties and sizes \square I can find lines of symmetry in 2-D shapes even when they are presented in different orientations \square I can complete a simple symmetrical shape given a line of symmetry.	missing lengths and angles I I can tell which shapes are regular and irregular polygons based on thinking about equal sides and angles. dian I can identify (name) 3-D shapes (including cubes and other cuboids) from 2-D diagrams of them	$\square \square$ I can compare and classify geometric shapes based on their properties and sizes \square I can name, describe and build simple 3-D shapes; I can making nets of 3-D shapes
Angles	\square I can identify right angles: I know that two right angles make a half-turn, three make three quarters of a turn and four a complete turn \square I can tell whether angles are greater or less than a right angle	\square I can identify acute and obtuse angles I can compare and order angles (up to 180°) by size		\square I recognise angles where they meet at a point, are on a straight line, or are vertically opposite: I can find missing angles
Position and direction		\square I can describe positions on a 2-D grid (in the first quadrant) using coordinates \square I can describe movement between positions as translations to the left/right and up/down and by how much \square I can plot specified points on a grid and draw sides to	$\square \square$ I can identify, describe and draw the position of a shape following a reflection or translation, using the appropriate language \square I know that the shape has not changed by reflection or translation	\square I can describe positions on the full coordinate grid (all four quadrants) \square I can draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
Statistics	\square I can read and present data using bar charts, pictograms and tables \square I can find answers to one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in bar charts, pictograms and tables	\square I can read and present data (discrete and continuous) using appropriate graphs, (including bar charts and time graphs) \square I can use information presented in bar charts, pictograms, tables and other graphs to answer questions where I need to add, subtract or compare	\square \square I can complete, read and interpret information in tables, including timetables	$\square \square$ I can interpret and construct pie charts and line graphs \square I can use pie charts and line graphs to solve problems

